

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cpptango/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cpptango/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image: logo] [http://www.tango-controls.org]

[image: TangoControls] [http://www.tango-controls.org]

[image: Build Status] [https://travis-ci.org/tango-controls/cppTango]
[image: Build status] [https://ci.appveyor.com/project/Ingvord/cpptango]

[image: Coverage Status] [https://coveralls.io/github/tango-controls/cppTango?branch=master]
[image: Codacy Badge] [https://www.codacy.com/app/Ingvord/cppTango?utm_source=github.com&utm_medium=referral&utm_content=tango-controls/cppTango&utm_campaign=Badge_Grade]

 [image: Download] [https://bintray.com/tango-controls/debian/cppTango/_latestVersion]
[image: License] [https://github.com/tango-controls/cppTango/blob/master/LICENSE]

[image: CLion] [http://www.jetbrains.com/clion]

TANGO distributed control system - shared library

TANGO is an object-oriented distributed control system. In TANGO all objects are representations of devices, which can be on the same computer or distributed over a network. Communication between devices can be synchronous, asynchronous or event driven.

The object model in TANGO supports methods, attributes and properties. TANGO provides an API which hides all the details of network access and provides object browsing, discovery, and security features.

TANGO is being actively developed as a collaborative effort between the ESRF (www.esrf.eu [http://www.esrf.eu]), Soleil (synchrotron-soleil.fr [http://synchrotron-soleil.fr]), Alba (www.cells.es [http://www.cells.es]), and Elettra institutes (www.elettra.trieste.it [http://www.elettra.trieste.it]).

For more information please visit www.tango-controls.org [http://www.tango-controls.org].

Documentation

Generated: tango-controls.github.io/cppTango-docs [https://tango-controls.github.io/cppTango-docs]

Manuals: tango-controls.org/resources/documentation/kernel [http://www.tango-controls.org/resources/documentation/kernel/]

How to build and install using cmake

mkdir build;
cd build;
cmake ..
[-DCMAKE_INSTALL_PREFIX=<desired installation path>]
[-DTANGO_DEVICE_SERVER_PATH=<installation folder for device servers, will be availabe via pkg-config>]
[-DOMNI_BASE=<omniORB4 home folder>]
[-DZMQ_BASE=<zmq home folder>]
[-DCMAKE_BUILD_TYPE=RELEASE|DEBUG]
[-DCMAKE_VERBOSE_MAKEFILE=true];
make;
[sudo] make install

More information is in INSTALL file [https://github.com/tango-controls/cppTango/blob/master/INSTALL.md]

Using pkg-config

Once installed cppTango provides pkg-config [https://en.wikipedia.org/wiki/Pkg-config] file tango.pc

One can use it to resolve libtango dependencies in his project, for instance using cmake:

include(FindPkgConfig)
pkg_search_module(TANGO_PKG REQUIRED tango)

#...

link_directories(${TANGO_PKG_LIBRARY_DIRS})

#note TANGO_PKG_XXX usage
add_executable(${PROJECT_NAME} ${SOURCES} ${HEADERS})
target_include_directories(${PROJECT_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR} ${TANGO_PKG_INCLUDE_DIRS})
target_compile_options(${PROJECT_NAME} PUBLIC -std=c++11)
target_compile_definitions(${PROJECT_NAME} PUBLIC ${TANGO_PKG_CFLAGS_OTHER})
target_link_libraries(${PROJECT_NAME} PUBLIC ${TANGO_PKG_LIBRARIES})

tango.pc provides default installation directory for all Tango devices linked against this libtango:

pkg-config --variable=tangodsdir tango
/usr/bin

How to test

1. First build everything

mkdir build; cd build; cmake ..; make

2. Start TANGO environment

make start-tango

Typical output:
Note env.TANGO_HOST value: this is normal TANGO_HOST that can be used, for instance, in Jive

Setup test environment
 174fda8cad89ac457a6129c599368d2842547575eac05f1d9b4ad60966cf0018
 CONTAINER=6130013cf55d420552df9dddd488b7564d58f49d10831d4880774443faf1a22b
 TANGO_HOST=172.17.0.3:10000
 Create tango_host file
 Wait till tango-cs is online

3. Run tests

make run-tests

Before running tests CTest runs conf_devtest (located in cpp_test_suite/new_tests) and starts DevTest and FwdTest device servers (located in cpp_test_ds)

4. Shutdown TANGO environment

make stop-tango

For information on how to run individual tests see INSTALL file [https://github.com/tango-controls/cppTango/blob/master/INSTALL.md]

How to contribute

See corresponding wiki page [https://github.com/tango-controls/cppTango/wiki/Contribution-Guide]

Usage workflow (draft)

	In its most basic form, we adopt the githubflow : the default branch is master, which is always in a deployable state (i.e. must never be broken); work on new features is done using temporary feature branches (which may live in the same repo or in a fork)

	Reporting issues: use github issues

	Code contributions: use Pull requests. Pull requests can be associated with issues. Trivial fixes can even be done from the web (a temporary branch is created automatically to use the Pull request infrastructure)

	Code review: most projects (all except single-developer ones) should only allow commits to the master branch after peer review. This can be enforced by the convention that all commits to master must be done via a Pull request and the pull request approved by a person different from the author of the commit.

	Releases (named versions):

	Simple projects may be ok with just tagging certain (ideally, all) commits done to the master branch with a version number. With this system, only one release is actively maintained simultaneously.

	More complex projects may require to simultaneously maintain more than one release (e.g. Tango may choose to support bugfixes in Tango9 even after Tango10 is released). In this case, releases may be done on release branches starting from master (see APPENDIX I for an example)

	Semantic versioning is recommended.

	Public automatic testing/continuous integration (e.g., via Travis) is recommended

	The main development should be done on the tango-controls hosted project (as opposed to using a private organization project and just pushing to the tango-controls repo from time to time). This allows for public visibility of the latest development and issues and encourages sharing and reuse. If a given organization needs special tweaks or has particular release/testing cycles, the recommendation is that the organization forks from the “canonical” repo

Links

Tango Controls web page [http://tango-controls.org]

Prerequisites

	tango-idl [https://github.com/tango-controls/tango-idl]

	docker and docker-engine (for tests)

How to build and install using cmake

	clone

	cd into cloned repo

	mkdir build

	cd build

	cmake ..

	make [-j NUMBER_OF_CPUS]

	sudo make install

cmake options are: [-DCMAKE_INSTALL_PREFIX=<desired installation path>] [-DOMNI_BASE=<omniORB4 home folder>] [-DZMQ_BASE=<zmq home folder>] [-DIDL_BASE=<tango-idl installation folder>] [-DCMAKE_BUILD_TYPE=RELEASE|DEBUG] [-DCMAKE_VERBOSE_MAKEFILE=true]

Options:

	-DOMNI_BASE = required if omniORB not installed with system package manager. OMNI_BASE points to the directory where you have installed omniORB which must include the libraries and binaries so cmake can find omniidl

	-DZMQ_BASE = required in zmq not installed with system package manager. ZMQ_BASE points to the directory where the zmq libraries and include files have been installed

Typical output:

-- Install configuration: "DEBUG"
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/lib/libtango.so.9.2.5
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/lib/libtango.so.9
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/lib/libtango.so
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/lib/pkgconfig/tango.pc
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/include/log4tango/Appender.hh
<snip>
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/include/subdev_diag.h
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/include/encoded_attribute.h
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/include/encoded_format.h
-- Installing: /storage/Projects/org.tango/git/cppTango/build/install/include/idl/tango.h

Ubuntu 16.04 compilation problem

When compiling on Ubuntu 16.04 the following error occurs:

[17%] Building CXX object cppapi/client/CMakeFiles/client_objects.dir/zmqeventconsumer.cpp.o
/home/ingvord/Projects/org.tango/git/cppTango/cppapi/client/zmqeventconsumer.cpp: In member function ‘virtual void* Tango::ZmqEventConsumer::run_undetached(void*)’:
/home/ingvord/Projects/org.tango/git/cppTango/cppapi/client/zmqeventconsumer.cpp:186:18: error: cannot convert ‘zmq::socket_t’ to ‘void*’ in assignment
 items[0].socket = *control_sock;
 ^
/home/ingvord/Projects/org.tango/git/cppTango/cppapi/client/zmqeventconsumer.cpp:187:18: error: cannot convert ‘zmq::socket_t’ to ‘void*’ in assignment
 items[1].socket = *heartbeat_sub_sock;
 ^
/home/ingvord/Projects/org.tango/git/cppTango/cppapi/client/zmqeventconsumer.cpp:188:18: error: cannot convert ‘zmq::socket_t’ to ‘void*’ in assignment
 items[2].socket = *event_sub_sock;
 ^
/home/ingvord/Projects/org.tango/git/cppTango/cppapi/client/zmqeventconsumer.cpp: In member function ‘bool Tango::ZmqEventConsumer::process_ctrl(zmq::message_t&, zmq::pollitem_t*, int&)’:
/home/ingvord/Projects/org.tango/git/cppTango/cppapi/client/zmqeventconsumer.cpp:1063:47: error: cannot convert ‘zmq::socket_t’ to ‘void*’ in assignment
 poll_list[old_poll_nb].socket = *tmp_sock;

This is due to incompatibility between libzmq3-dev:4.0.5 (debian jessie) and libzmq3-dev:4.1.7 (ubuntu 16.04), i.e. it is not possible to compile cppTango using libzmq provided in Ubuntu.

The following workaround can be applied:

Download and compile zmq-4.0.5 [https://github.com/zeromq/zeromq4-x/releases/tag/v4.0.5]. Install it in some folder, e.g. cppTango/lib/zeromq-4.0.5.

Download and copy into zmq-4.0.5 installation folder, e.g. cppTango/lib/zmq-4.0.5/include, all *.hpp files from cppzmq [https://github.com/zeromq/cppzmq]

Build cppTango using installed zmq-4.0.5: cmake .. -DZMQ_BASE=../lib/zmq-4.0.5

This problem is addressed in issue #273

How to setup tests

Using provided docker based TANGO environment:

Build the library:

$ mkdir build
$ cd build
$ cmake ..
$ make

Start TANGO environment

$ make start-tango
Setup test environment
557e3c8a3daa2b75aac4fe04562bac32570db0ace08edd06a23cebaa7fd86f5e
CONTAINER=27bad3659305155c33d99505c4836b616d9c2a6de3431229e79b71a020f18455
TANGO_HOST=172.17.0.3:10000
Create tango_host file
Wait till tango-cs is online

This process takes ~30 s

Run tests

$ make run-tests
TANGO_HOST=172.17.0.3:10000
Run conf_devtest
Added test server : DevTest/test -> test/debian8/10, class : DevTest
Added test server : DevTest/test -> test/debian8/11, class : DevTest
Added test server : DevTest/test -> test/debian8/12, class : DevTest

Added test server : FwdTest/test -> test/fwd_debian8/10, class : FwdTest

Added pseudo server : DsCache/test -> test/cache1/1, class : CacheTest1
Added pseudo server : DsCache/test -> test/cache1/2, class : CacheTest1
Added pseudo server : DsCache/test -> test/cache2/1, class : CacheTest2

<snip>

Constructing a list of tests
Done constructing a list of tests
Checking test dependency graph...
Checking test dependency graph end
test 1
 Start 1: log4tango_test

<snip>

100% tests passed, 0 tests failed out of 59

Total Test time (real) = 843.30 sec

Run command: /home/tango/src/build/cpp_test_suite/environment/post_test.sh

The whole test suite takes ~ 15 min

Setup and run individual tests

To run individual tests use TANGO_HOST provided by the start-tango target.

Make sure TANGO_HOST is set correctly:

$ cd build
$ cat tango_host
#!/bin/bash
export TANGO_HOST=172.17.0.3:10000

TANGO_HOST must be the same as what start-tango has returned.

$. tango_host

Now run some test:

$ ctest -R attr_misc -V
UpdateCTestConfiguration from :/storage/Projects/org.tango/git/cppTango/build/DartConfiguration.tcl
Parse Config file:/storage/Projects/org.tango/git/cppTango/build/DartConfiguration.tcl
 Add coverage exclude regular expressions.
UpdateCTestConfiguration from :/storage/Projects/org.tango/git/cppTango/build/DartConfiguration.tcl
Parse Config file:/storage/Projects/org.tango/git/cppTango/build/DartConfiguration.tcl
Test project /storage/Projects/org.tango/git/cppTango/build
Run command: /storage/Projects/org.tango/git/cppTango/build/cpp_test_suite/environment/pre_test.sh
TANGO_HOST=172.17.0.3:10000
Run conf_devtest
<snip>
Constructing a list of tests
Done constructing a list of tests
Checking test dependency graph...
Checking test dependency graph end
test 12
 Start 12: old_tests::attr_misc

12: Test command: /storage/Projects/org.tango/git/cppTango/build/cpp_test_suite/old_tests/attr_misc "test/debian8/10"
12: Test timeout computed to be: 1500
12:
12: new DeviceProxy(test/debian8/10) returned
12:
12: Setting/Getting attribute info --> OK
12: Writing outside attribute limits --> OK
12: Min alarm detection (on a float spectrum) --> OK
12: Reset min alarm detection --> OK
12: Max alarm detection (on a float spectrum) --> OK
12: Reset max alarm detection --> OK
12: Min alarm detection (on a unsigned short spectrum) --> OK
12: Reset min alarm detection --> OK
12: Max alarm detection (on a unsigned short spectrum) --> OK
12: Reset max alarm detection --> OK
12: Setting/Getting V5 attribute info --> OK
12: Alarm, Warning level detection --> OK
12: Exception when trying to change "hard coded" properties --> OK
1/1 Test #12: old_tests::attr_misc Passed 0.29 sec

The following tests passed:
 old_tests::attr_misc

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.33 sec

See CTest guide [https://cmake.org/Wiki/CMake/Testing_With_CTest]

Stop TANGO environment

$ make stop-tango

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

